▷ 常用指纹细节特征标注方法的比较研究

引用本文
李康, 尹津引, 吴浩. 常用指纹细节特征标注方法的比较研究[J].刑事技术, 2018,43(4):272-276
LI Kang, YING Jinyin, WU Hao. Comparison among the Common Approaches to Label Fingerprint Specific Features[J]. Forensic Science and Technology,2018,43(4): 272-276
doi: 10.16467/j.1008-3650.2018.04.003
Permissions
Copyright©2018, 《刑事技术》编辑部
《刑事技术》编辑部
常用指纹细节特征标注方法的比较研究
李康1, 尹津引1, 吴浩2
1.浙江警察学院,杭州 310053
2.公安部物证鉴定中心,北京 100038
第一作者简介:李康(1988—),男,湖北天门人,硕士,讲师,研究方向为痕迹检验技术和手印学。E-mail:likang@zjjcxy.cn
基金资助: 中央级公益性科研院所基本科研业务费专项资金项目(NO.2016JB025)
摘要
目的 为了有效提高PU-AFIS的匹配效率,对常用的指纹细节特征标注方法进行比较研究,找出指纹细节特征的最佳标注方法。方法 通过比较实验,探究GA 774.5—2008《指纹特征规范(第5部分):指纹细节特征点标注方法》中的标注方法、指纹工作者在长期实践过程中的习惯标注方法以及模拟指纹自动识别系统自动提取的标注方法对查询比对结果的影响。结果 三种标注方法都能够有效匹配使对应捺印指纹出现在候选队列,但是根据模拟系统自动提取的标注方式标注细节特征的现场指纹与对应捺印指纹匹配效果最好、得分最高。结论 模拟系统自动提取的标注方法为最佳标注方法,建议选择系统自动提取的标注方法为人工标注的标准。
关键词:
指纹自动识别系统; 细节特征; 标注方法; 比较研究
中图分类号:DF794.1
文献标志码:A
文章编号:1008-3650(2018)04-0272-05
Comparison among the Common Approaches to Label Fingerprint Specific Features
LI Kang1, YING Jinyin1, WU Hao2
1.Zhejiang Police College, Hangzhou 310053, China
2.Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
Abstract
Objective To find out the best way for labeling the particulars of fingerprint through effectively improving the matching efficiency of automatic fingerprint identification system (AFIS) by comparison and analysis of three kinds of methods on labeling fingerprint specific features.Methods Labeling the fingerprint particulars is commonly built on three approaches: 1. fingerprint feature specification (Part 5) stipulated in the Public Security Behavior Standards of the People’s Republic of China; 2. the accustomed way that the fingerprint examiners have established in long practice and use routinely; 3. the annotation that AFIS system simulates to automatically extract the specific features. By comparative experiments, an inquiry was conducted about the influence of the three labeling choices on query performance.Results Three methods of labeling fingerprint particulars can all produce effective matches to make the corresponding fingerprints appear in the candidate queue. Yet the way that AFIS system adopts is the best, achieving the highest score.Conclusions The annotation that AFIS system automatically extracts specifics is the best way for labeling fingerprint particulars, worth recommending to be selected as the standard for artificial labeling.
Key words:
AFIS (automatic fingerprint identification system); specific feature; labeling methods; comparative research
文章图片
文章图片
目前, 全国公安机关指纹自动识别系统存储十指指纹总量已达1.4亿余人份, 各地公安机关每年利用指纹信息比中案件12万余起, 抓获犯罪嫌疑人5万余人, 一批大要案件通过指纹技术得以侦破。通过指纹查明犯罪嫌疑人真实身份、深挖犯罪嫌疑人余罪、发现破案线索等工作已经成为一种科学、高效、便捷、规范的侦查基本技战法[1, 2, 3]。而指纹自动识别系统作为完成指纹同一认定的重要辅助工具, 极大地提高了指纹筛选、匹配的效率, 因此通过研究提高指纹自动识系统识别效率的方法加快指纹认定的速度, 也是高效辅助侦查破案的手段之一。但是, 我国对于指纹自动识别系统尚未建立全国统一的指纹大库, 存在各地各自为政、各自建库的情况, 各种系统标准的不同和研发人员的主观影响使得我国指纹自动识别系统系统化程度较低。此外, 因版权原因各个系统使用的算法不公开, 导致技术人员进行特征标注的方法因人而异, 也没有相应的标准, 操作者需要通过经验或前期实验来找到对应系统的最佳标注方法[4, 5, 6, 7]。当前, 指纹细节特征的人工标注方法以GA 774.5--2008《指纹特征规范(第5部分):指纹细节特征点标注方法》中的标注方法[8]和指纹工作者在长期实践过程中的习惯标注方法为主。由于系统不同, 人员素质不同, 对于习惯标注方法也不能一概而论, 本文中提及的习惯标注方法主要是指“ 分歧结合标主线, 主从不明标中间; 小点小棒和小眼, 两端标注尾相连; 小桥连接两岸线, 不标桥上标岸边; 小钩标注似小桥, 平行标注最重要” [9]这一常用标注方法。而模拟系统自动提取的标注方法作为由捺印指纹自动提取逆推而来的人工标注方式未被特别地重视和全面系统地总结, 人机差异不能有效地减少。因此, 本研究希望通过比较实验的方法得到与PU-AFIS系统最为匹配的标注方法, 明确标注过程中需要注意的事项, 最大程度优化查询比对结果。
1 材料与方法1.1 实验设备和材料计算机(公安网专用)、高性能服务器、北大高科指纹自动识别系统PU-AFIS 3.2版、Photoshop(ps5)软件、指纹信息管理系统。
1.2 实验样本选取在省级现场指纹库中随机抽样选取可以在目标捺印库中比中相应捺印指纹的200枚指纹。指纹特征点的选取主要遵循清晰、稳定、不变形的原则, 保证实验的可靠性。为此, 选取条件相对较好的现场指纹进行实验, 并且特征点最好位于指纹中心部位, 清晰、完整、不变形。
1.3 对实验中采用细节特征的认定本次实验涉及的细节特征, 即起点、终点、分歧、结合、小桥、小勾、小点、小孔、小棒, 为行业标准所定义的乳突纹线上的九大细节特征[10]。
2 实验内容先对指纹自动识别系统自动提取特征的标注方法进行统计研究, 根据统计结果提炼出自动提取特征的最佳标注方法, 作为模拟自动提取方法, 再对三种方法进行比较研究。
2.1 指纹自动识别系统自动提取特征的标注方法在PU-AFIS系统中随机选择800枚捺印指纹, 在系统自动提取特征后观察并统计这800枚指纹中终点、起点、分歧、结合这四个最常见特征的标注规律。此外, 在这800枚指纹中分别找到有小桥、小勾、小点、小眼出现的指纹200枚, 有小点出现的指纹120枚, 分别对每个特征自动提取后的标注规律进行统计, 分析得到系统自动提取标注方法。
2.2 不同标注方法及其对比对结果的影响先对三种细节特征标注方法进行比较, 找出九大细节特征中标注的异同点, 再对不同的细节特征标注方法对比对结果的影响进行比较研究。三种指纹细节特征编辑方法对同一指纹具体标注方法如图1所示。查询完成后, 记录所选取现场指纹三种标注方法比较实验结果。
图1Fig.1Figure OptionViewDownloadNew Window 图1 三种标注方法对同一枚指纹细节特征的标注^(a:行业标准; b:习惯标注方法; c:模拟自动提取)Fig.1 Three methods to label the same fingerprint’ s minutiae points (a: one required by professional standard; b: the accustomed; c: simulating the way adopted by AFIS’ s automatic extraction)
3 结果与讨论3.1 系统自动提取标注方法的研究统计结果及分析在200枚指纹中, 小桥的标注方法出现三种, 小勾的标注方法出现两种, 小点的标注与习惯标注差异较大, 但标注方法唯一。三种细节特征的具体标注方法及出现概率如表1所示。除以上三种细节特征外, 其余六种细节特征的标注方法都符合标注习惯。
表1Table 1表1(Table 1) 表1 具体标注方法与统计结果 Table 1 Specific labeling methods and statistical results 表1 具体标注方法与统计结果 Table 1 Specific labeling methods and statistical results在观察统计系统自动识别特征并标注的过程中还发现, 指纹自动识别系统在自动提取特征过程中存在以下问题:
1)特征点漏提。在系统提取特征点时, 存在部分特征点被忽略或者提取不全的现象, 如图2蓝圈内所示。
2)特征点误提。由于现场指纹模糊或严重变形导致指纹照片质量较差, 个别细节特征点在图像预处理阶段没有被准确识别, 因此在细节特征抽取阶段往往将这些点作为特征点错误提取, 如图2蓝框内所示。
3)特征点提取偏差。在自动提取结束后, 很多标注并非准确地标注在纹线上, 标注的位置存在细微甚至几根纹线的偏离并且标注的方向也会发生细微的偏差, 如图2蓝色箭头所示。
4)点特征无法识别, 系统无法识别点特征与小于一个纹线宽度的小勾, 也使得小点与小勾的自动提取标注方式与小棒近似。
此外, 还存在系统因无法识别小桥而将其视为一个分歧和一个结合, 以及细微的连接点较难识别等问题。这些系统识别特征时产生的问题是造成自动提取特征与日常习惯标注方法存在差异的根本原因。
图2Fig.2Figure OptionViewDownloadNew Window 图2 自动提取中存在的问题示意图Fig.2 Indication for the problems occurring in automatic extraction
3.2 三种常用标注方法比较及分析3.2.1 标注方法相同的细节特征
通过比较发现三类标注方法在起点、终点、小眼、短棒四类细节特征中标注方法完全相同, 具体标注方法如图3所示。
图3Fig.3Figure OptionViewDownloadNew Window 图3 标注方法相同的细节特征示意图Fig.3 Sketch of the minutiae points which have the same labeling method
3.2.2 标注方法不同的细节特征
在剩下的五大细节特征中, 行业标准和习惯标注方法只在分歧和结合存在主线时标注有差异, 其他特征标注方法都相同。而自动提取与另外两个方法比, 除了分歧和结合的标注方式与习惯标注方法完全相同以外, 其余小点、小桥、小勾三类细节特征标注差异较大。标注方法不同的特征具体标注方式如图4所示。
图4Fig.4Figure OptionViewDownloadNew Window 图4 标注方法不同的细节特征示意图Fig.4 Sketch of the minutiae points which have the different labeling methods
3.3 不同标注方法对比对结果的影响及分析在三种标注方法的比较实验中, 我们共选择现场指纹200枚, 先后对200枚现场指纹用三种标注方法分别进行标注并发送查询, 共发送查询600次。其中行业标准得分最高的指纹共8枚, 占全部指纹的4%; 习惯标注方法得分最高的指纹共16枚, 占全部指纹的8%; 模拟自动提取得分最高的指纹共171枚, 占全部指纹的85.5%; 其余的5枚现场指纹存在不同标注方法之间得分相同的情况, 三种标注方法得分都相同的3枚, 占全部指纹1.5%。行业标准和习惯标注方法得分相同且高于自动提取标注方式的2枚, 占全部指纹的1%。部分指纹的比较实验结果如表2所示。
表2Table 2表2(Table 2) 表2 部分指纹的比较实验结果 Table 2 Comparative results of the selected fingerprints现场条码号行业标准习惯标注模拟自动提取排名得分排名得分排名得分3302260002007070013081213389121284212639253302260002002010029511114645911146459123059893302260002006050028014188561341933905519954333307830002012111205051131481113148111314813303021002015050231102783612783612114811330483000201212900201120185120185140230330324025201211838303181466181466181808330483000201001014702////2526942330483000201209128404103856811415028419853302260002001020396041415732141573216406273302260002007060036032442362442362471123302260002010040013011258403125840322818083305226202015090018031837176183717611263980330782000201008094101167120169311173708330282000201206000601111107811258881128458注:“ /” 表示此指纹未比中, 不在候选队列中。
表2 部分指纹的比较实验结果 Table 2 Comparative results of the selected fingerprints此外, 主线识别错误会使得分大幅度降低, 在使用三种方法对指纹细节特征进行编辑的过程中, 发现对现场指纹的主线判断存在一定的难度, 且会增加标注特征的时间。而主线标注错误的指纹匹配效果较差, 比对的得分也大幅度降低。针对主线判断错误对系统造成的影响, 选择指纹50枚, 对每一枚指纹用两种方法进行标注。一种方式为正确识别主线, 另一种则错误识别主线, 将两种标注方法进行比较研究。发送查询100次。部分指纹两种标注方法的具体结果见表3。根据实验结果可明确, 在准确识别主线的情况下用习惯标注方法标注分歧与结合会大大提高指纹的匹配率, 但是若在运用公安行业标准时错误识别纹线主线会大大降低系统的匹配率。
表3Table 3表3(Table 3) 表3 主线识别实验结果 Table 3 Results of recognition against main lines of the selected fingerprints现场条码号正确识别主线错误识别主线序号得分序号得分33038100320150900570214276281399832330382000201506005203194743//330382000201511016401137840237358330483000201511363002157037711667993306835302013010145071451612119326433070252020150600680214118013292255330718000201209028202122337812001753307820002010040332021862512145255633078400020130700650112080141142562注:“ /” 表示此指纹未比中, 不在候选队列中。
表3 主线识别实验结果 Table 3 Results of recognition against main lines of the selected fingerprints4 结论4.1 模拟自动提取的标注方法与系统最匹配将由捺印指纹自动提取统计的标注方法逆向运用到现场指纹的细节特征标注中去, 使得捺印指纹和现场指纹在细节特征上最大程度匹配, 指纹比对的准确率更高, 排名、得分和比中概率等指标均最优。
4.2 大部分指纹在用行业标准和习惯标注方法标注时排名、得分相同分析使用不同标注方法排名和得分相同的现场指纹, 发现行业标准和习惯标注方法的差异只是在能否区分主次线的分歧和结合上, 在其他的特征标注上是不存在差异的。并且在实验研究过程中发现仅有少量指纹可以区分主次线的分歧或结合, 根据存在可区分主次线的分歧和结合的现场指纹分析可以得到, 习惯标注方法优于行业标准。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
参考文献
文献选项
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1]
李康, 许惠芬, 吴浩. 全方位、多角度提升指纹查询比对效率的方法[J] . 中国司法鉴定, 2017, 93(4): 83.
[本文引用:1]
[2]
韩柯, 吴浩. 指纹信息化建设及应用综述[J] . 警察技术, 2012(6): 4-6.
[本文引用:1]
[3]
王瑛玮, 孙忠等. 指纹识别技术发展及应用概况[J] . 警察技术, 2009(3): 4-7.
[本文引用:1]
[4]
陈志, 向鹏. 提高指纹自动识别系统应用成效对策[J] . 刑事技术, 2011(2): 40-42.
[本文引用:1]
[5]
姚越武, 张璐熠. 对浙江省转型期AFIS运行模式及机制的思考[J] . 警察技术, 2009(3): 11-14.
[本文引用:1]
[6]
孙东晓. 浅议指纹系统提高比中效率的方法和技巧[J] . 北京警察学院学报, 2014(1): 94-97.
[本文引用:1]
[7]
郭卫平. 指纹查询比对系统查询方法研究[J] . 中国刑警学院学报, 2015(3): 52-54.
[本文引用:1]
[8]
全国刑事技术标准化技术委员会. 指纹特征规范(第5部分): 指纹细节特征点标注方法: GA774. 5-2008[S]. 北京: 中国标准出版社, 2008: 2-3.
[本文引用:1]
[9]
王文江. 指纹自动识别与检验[M] . 北京: 中国人民公安大学出版社, 2011: 263.
[本文引用:1]
[10]
全国刑事技术标准化技术委员会. 指纹专业名词术语: GA/T144-1996[S]. 北京: 中国标准出版社, 1996: 1-3.
[本文引用:1]
1
2017
0.0
0.0
李康, 许惠芬, 吴浩. 全方位、多角度提升指纹查询比对效率的方法[J] . 中国司法鉴定, 2017, 93(4): 83.
摘 要: 指纹自动识别技术作为人身识别技术已经广泛运用于公安实战,通过指纹系统查明犯罪嫌疑人真实身份、深挖犯罪嫌疑人余罪、发现破案线索等工作已经成为一种科学、高效、便捷、规范的基本侦查手段。但是,随着十指库容的逐年增加,各地指纹自动识别系统应用普遍出现了比对速度和比对精度下降的问题,导致部分案件漏查,也造成大量系统资源和人力资源的浪费。为提升指纹查询比对的效率,对各种可能影响因素进行了综合分析,得出了全方位、多角度提升指纹查询比对效率的方法,主要包括:第一,提高捺印指纹的质量,从源头上保证指纹系统破案的效率;第二,认真对待捺印指纹的特征标记,从根本上提高捺印指纹的利用效率;第三,注重现场指纹的搜集和研判,从质量上提高现场指纹的利用效率;第四,进一步扩大查询范围和协同作战,从时空上突破指纹系统破案的瓶颈;第五,重视指纹特征标记和人工认定,从技巧上提高查询比对的速度和准确度;第六,加强对指纹系统本身的深度运用,多方面挖掘指纹系统破案的潜力。以期对公安实战部门利用指纹系统破案提供参考,达到最大限度地发挥指纹系统破案能力的目的。
... 通过指纹查明犯罪嫌疑人真实身份、深挖犯罪嫌疑人余罪、发现破案线索等工作已经成为一种科学、高效、便捷、规范的侦查基本技战法[1,2,3] ...
1
0.0
0.0
... 通过指纹查明犯罪嫌疑人真实身份、深挖犯罪嫌疑人余罪、发现破案线索等工作已经成为一种科学、高效、便捷、规范的侦查基本技战法[1,2,3] ...
1
0.0
0.0
王瑛玮, 孙忠等. 指纹识别技术发展及应用概况[J] . 警察技术, 2009(3): 4-7.
... 通过指纹查明犯罪嫌疑人真实身份、深挖犯罪嫌疑人余罪、发现破案线索等工作已经成为一种科学、高效、便捷、规范的侦查基本技战法[1,2,3] ...
1
0.0
0.0
陈志, 向鹏. 提高指纹自动识别系统应用成效对策[J] . 刑事技术, 2011(2): 40-42.
... 此外,因版权原因各个系统使用的算法不公开,导致技术人员进行特征标注的方法因人而异,也没有相应的标准,操作者需要通过经验或前期实验来找到对应系统的最佳标注方法[4,5,6,7] ...
1
0.0
0.0
姚越武, 张璐熠. 对浙江省转型期AFIS运行模式及机制的思考[J] . 警察技术, 2009(3): 11-14.
结合浙江省实际情况,提出在转型期应如何设计、构建新的运行模式,建立以标准采集室为基础的人员信息一体化、标准化采集、实时查重、实时倒查及多信息关联应用等一套适宜于转型期的运行机制,以便提高转型后指纹系统的比对、打击应用实效及保持其持续的活力.
... 此外,因版权原因各个系统使用的算法不公开,导致技术人员进行特征标注的方法因人而异,也没有相应的标准,操作者需要通过经验或前期实验来找到对应系统的最佳标注方法[4,5,6,7] ...
1
0.0
0.0
孙东晓. 浅议指纹系统提高比中效率的方法和技巧[J] . 北京警察学院学报, 2014(1): 94-97.
计算机指纹自动识别系统作为" 科技强警"的一个重要组成部分已在全国公安机关得到了广泛应用。技术人员应了解识别系统的工作原理,掌握正确的查询方法和编辑技巧,提高比中效率,最大限 度地挖掘识别系统的潜能,为侦查破案提供更多更快的技术支持,真正体现"科技强警"的内涵。
... 此外,因版权原因各个系统使用的算法不公开,导致技术人员进行特征标注的方法因人而异,也没有相应的标准,操作者需要通过经验或前期实验来找到对应系统的最佳标注方法[4,5,6,7] ...
1
0.0
0.0
郭卫平. 指纹查询比对系统查询方法研究[J] . 中国刑警学院学报, 2015(3): 52-54.
... 此外,因版权原因各个系统使用的算法不公开,导致技术人员进行特征标注的方法因人而异,也没有相应的标准,操作者需要通过经验或前期实验来找到对应系统的最佳标注方法[4,5,6,7] ...
1
2008
0.0
0.0
... 5--2008《指纹特征规范(第5部分):指纹细节特征点标注方法》中的标注方法[8]和指纹工作者在长期实践过程中的习惯标注方法为主 ...
1
2011
0.0
0.0
... [9]这一常用标注方法 ...
1
1996
0.0
0.0
... 3 对实验中采用细节特征的认定本次实验涉及的细节特征,即起点、终点、分歧、结合、小桥、小勾、小点、小孔、小棒,为行业标准所定义的乳突纹线上的九大细节特征[10] ...